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ABSTRACT

A reformulation of the Blunck and Westphal theory of electron energy

loss in metals was performed for the metals beryllium, aluminum, copper,

tin, gadolinium, and lead. Comparison v/ith previous theoretical calcula-

tions shows good agreement for the most probable energy loss and for the

full widths at half maximum of the electron energy loss distributions.

The computer program designed for these calculations is an improvement

over previous programs in both computation time and simplicity.

A semi-smpirical formula for the most probable energy loss was

calculated. This formula agrees, within a few percent, with the most

probable energy loss calculated according to the Blunck and Westphal

theory except in the case of thick (>3 gm/cm ) absorbers of heavy elements

The full width at half maximum for the energy loss distribution is

presented in graphical form as functions of target thickness and atomic

number. Both the most probable energy loss and the half widths were found

to be only slightly dependent upon the initial electron energy.
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I. INTRODUCTION

The theory of energy loss of monoenergetic electrons was first

treated by Landau in 1944 [1]; revised by Blunck and Leisegang in 1950

[2]; and Blunck and Westphal in 1951 [3]. The Blunck and Westphal

theory assumes an incident beam of monoenergetic electrons and treats

energy losses due to both radiation (bremsstrahlung) and to ionization/

excitation of atomic electrons. In the theory, energy transferred to

the recoil nucleus is neglected.

Previously, experimental studies of the energy loss of high energy

electrons in metals have been performed at the Naval Postgraduate

School by Bumiller, Buskirk, Dyer, and Miller [4], Miller [5], Goodwin

[6], Deleuil and Raynis [7], Mosbrooker and Sandquist [8], and by

Barry and Oppedahl [9]. Comparison of theoretical and experimental

values, for the most probable energy loss and for the full width at

half maximum for the energy loss distribution, have given consistent

and comparable results for thin targets. However, previous computer

programs designed to numerically compute the energy loss distribution

have encountered divergence problems in certain integrals, and have

been unsuccessful in the treatment of data from experiments with

targets of high atomic number and large thickness. K. Whoeler [10]

has reformulated the expressions in the Blunck and Westphal theory

so that tractable numerical calculations can be achieved. The energy

loss distributions of electrons have been recalculated using this

reformulation and satisfactory comparison to experiment and previous

calculations has been achieved with a significant reduction in

computation time.
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An important parameter in all electron energy loss experiments is

the value of the most probable energy loss for a given thickness of

target. A semi-empirical formula has been determined which wi 11 give the

correct value of the most probable energy loss to within about 3% for all

absorbers except ones made of thick, heavy elements. This formula is a

function of the atomic number, the atomic weight, the target thickness

2 2
in gm/cm and the density in gm/cm . Ihe full width at half maximum

of the energy loss distribution is also an important parameter to the

experimenter. A graphical presentation of the half-widths of the energy

loss distributions is given in order to aid the experimenter in anticipa-

ting the values of the half-width without using the time-consuming

computations of the Blunck and Westphal theory.





II. THEORETICAL CONSIDERATIONS

A. THE BLUNCK AND WESTPHAL THEORY

The probability that an electron of energy E- looses an amount of

energy between Q and Q + dQ is W(Q)dQ. The expression for W(Q)dQ is

given by Blunck and Westphal [3].

Q

W(Q)dQ =
JJ W

I
(Q-q)W

s
(q)dqdQ (1)

q =

where

Wy(Q-q)dQ = probability of energy loss Q-q, due to ionization

W (q)dq = probability of energy loss q, due to radiation

Wj(Q-q)W
s
(q)dqdQ joint probability of radiation loss q and

ionization loss Q-q.

In this theory it is assumed that the energy loss Q is small compared

to the incident beam of energy, E
.

, that is, Q«E-

.

The probability distribution for energy loss due to ionization and

excitation is [3]:

,2~

exp
4 C Y

Wj(Q--q)dQ =
I

Y=l SZ2. 2
b" + Y.

h 2 + 2
b + y

y

dx (2)

where C , y and x are constants evaluated by Blunck and Westphal to fit
Y Y Y

the above equation to an approximation composed of four Gaussian functions,

X is the Landau lambda, a parameter related to the energy loss Q.

The Landau lambda was defined by Blunck and Leisegang as:

= _Q__ K

ax

with C = 1.116.

+ In
ax

(3)





In the equation for lambda,

Q is the total energy loss traversing a path distance, x,

2
"a" = 0.154Z/3 pA = basic cross section constant,

E- is the initial electron energy, and

K is the average energy loss per centimeter of target material.

If one uses "K, the average energy loss per length of target, as

derived by Sternheimer [11] and accounts for density effects, C, the

numerical constant in the Landau lambda becomes C = 0.686, as shown by

Whoeler. A derivation of this constant can be found in Appendix C.

The probability that an electron looses an amount of energy between

q and q+dq by radiation alone is according to the Blunck and Westphal

theory [3].

Mq>dq Jtt l£\ ^ (4)

where z = aDpR

-3Z2
a
R

= 1.4 x 10
J ~ F

F = Jin (183 Z"
1/3

) + I
.

an is equal to the inverse radiation length times the In 2, and F is a

correction constant taking into account complete screening of the

nucleus by the orbit electrons. The derivation of these two constants

can be found in Appendices D and E. The factor of In 2 in this expression is a

consequence of the theory of radiation loss according to Heitler and

Bethe [12], in which the radiation length is defined as that length where

the electron has lost half of its energy to radiation.

Combination of equations 2 and 4 gives the expression for the total

probability, W(Q)dQ. If the following is defined:





*
=

IX

Ct.
» U - *) =

I y
t
y exp

b + y
Y

-(A - X - *)
2n

h 2 + 2
b + y y

(5)

(6)

it is possible to obtain using expressions (1) and (2) the following:

/W(Q)dQ = J *(x-<j>) jrj^j If
L.feL\ ,zdi

dX (7)

fEj r(z)
{ ^-

C Y
Y Y

b + y

exp
-(x-x-*) 2i

h 2 4
2

b + y
Y

z-1

d<j) dX

/ 9 9

With the transformation $ = 3- ' b +7 , it is possible to define a

integration variable n, so that the total probability becomes:
(x-X )

- y
z z/2 „ .2 ,

2
-, c y e D + Y

v Y Y Y

new

»«W
-(g) ft) TXIjl **

V7b2
+

~z
V

f
m

, IJI (x-x
Y )

n exp (—

2

p
Y

b + y

n - o~ )dr dx . (8)

The variable q in equation (1) is related to the variable, n, and Q is

related to x. For convenience, A is defined as
Y

x - x
Y

A = -—

—

D + Y

in order to express equation (8) in an apparently simpler form.

z. z/2 n
m , S2 A

"«»-©« Mt^J*^
n

n - J
Y '(b'+ y

2
)

dn dx -(g)
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It is found that for values of z less than 1.0, that is, for relatively

thin targets, the integrand tends to infinity at the lower limit of inte-

gration and numerical evaluation of the integral in this form is not

possible. Transformation of the above equation by series expansion and

integration by parts will produce a form that does not diverge and

produces an integral that can be computed numerically (see Appendix F for

derivation of removal of divergence). This procedure will produce the

following equation:

z J. 1 2.

W(Q)dQ#) (1) r̂(z)

J 'm

C Y
Y Y

'b
2

+ y
2

1-Z

n- n
Z

exp f /2/yi -
.

1 2 /— n exp i/2An
z 'm

f

\ m

dx . (10)

Earlier, z was defined as z = a
R
pX. This is also equal to a

R
T where

2
T is the target thickness in gm/cm". Finally by defining t = z In 2 =

-A

a.
R
T In 2, the final expression used in the calculation becomes

,2

'lAfci 1^ i
y

c^ e

,«TA E
i I

2 ^ Y=i .rnr—t
W(Q)dQ

where

a =
0.154 Z

6
2

A

Y

(ID

b + v )
Y

and,

1
f

T
Y

=
~T (n

n
} exP.^(^m )l

0^ "
n [/2a - n] exp 0(n)] d n

and,

n

*(n) = ft An- —
Y

2
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The expression ^ ^ was calculated from expression (11) using the

IBM 360 computer. The code is found in Appendix G and the program is in

Appendix H.

B. A SEMI-EMPIRICAL FORMULA FOR THE ENERGY LOSS

The most probable energy loss (Q ) can be obtained from the Blunck
r

and Westphal theory only by the rather tedious calculations outlined

above. For that reason, a semi-empirical fit has been made to the Blunck

and Westphal results. Hanson, Goldwasser, and Mills [13, 14] give a semi-

empirical formula for the most probable energy loss. It has the form:

Q
p

= a t
A

In -+ b
p

where:

a = .154 and b = 17.68,

Z is the atomic number,

A is the atomic weight,

p is the density of target in gm/cm ,

2
t is the target thickness in gm/cm .

The formula agrees with the Blunck and Westphal results to within about

15%.

Presented in this paper for the formula of the most probable energy

loss is the equation:

Q
p

=0.154 t | In - + 20.035
P

By setting the value of a equal to 0.154 (a collection of fundamental

constants) and solving for b in order to fit the formula to the Blunk

and Westphal results, a better semi -empirical formula was arrived at,

12





which gives results that are within 3% of the Blunck and Westphal values

except for thick targets of heavy elements.

13





III. ANALYSIS OF RESULTS

The values for the most probable energy loss and the full width at

half maximum found in Tables I through VIII were taken from the calculat-

ed energy loss distributions of electrons, using Blunck and Westphal's

theory. This final energy loss distribution was found using an initial

distribution which was not monoenergetic but which had a finite half

width. The initial distribution was then folded into the Blunck and

Westphal theory using the histogram method as described by Barry and

Oppedahl [9], In previous works however, the initial distribution was

approximated by taking its experimental half width and fitting this half

width to a Gaussian function. In this thesis, the actual experimental

distribution for the incident electrons was used, taken from data of

previous experiments [6, 7, 8, & 9]. In Tables I through VIII, Q (B&O)

refers to the value of the most probable energy loss as calculated by

Barry and Oppedahl; Q (MID) refers to the most probable energy loss as
r

calculated in this paper, and Q (EXP) refers to the experimental value of

the most probable energy loss.

The results for most probable energy loss, Q , and half widths, H.W.,

were then plotted against the target thickness for various metals. These

results were compared with the theoretical results calculated by Barry

and Oppedahl and with the actual experimental values. This comparison

in lead can be see in Figures 1 through 6.

The most probable energy loss and half widths for the electron

energy loss distribution of various metals were also calculated using

monoenergetic initial electron beam. These parameters, Q and H.W.,

14





were then plotted against target thickness and the resulting curves were

then fitted to an empirical formula which will calculate the most prob-

able energy loss and half width given the target thickness, the atomic

number Z, the atomic weight A, and the density of the target material.

These results are found in Figures 7 through 10.

15





1 v • RESULTS AND CONCLUSIONS

The theoretical results for the most probable energy loss, Q , and

full width at half-maximum, H.W., for the electron energy loss distri-

butions, as calculated from the reformulation of Blunck and Westphal's

energy loss theory, are listed in Tables I through VIII. A comparison

of these results with Barry and Oppedahl's theoretical results yields

values which are essentially the same for the range of target thickness

of the metals used. Comparison with experimental values, taken from

previous experiments performed at the Naval Postgraduate School, yield

results which are excellent for the most probable energy loss, but which

predict the correct half-widths of the distributions for only thin

2
targets of thickness < 3 gm/cm . These are the same results arrived at

in previous papers on this subject. However, the predicted values for

Q were, in some cases, closer to the experimental value than the

theoretical values presented in previous theses. This is believed to

be because the actual experimental initial distribution was used in the

calculations rather than a Gaussian approximation and because density

effects were properly considered by the redefinition of the Landau

lambda.

The discrepancies in the half-widths for the thicker, heavier

targets is to be expected based on the assumptions made in the Blunck

and Westphal theory. It is assumed in this theory that the energy loss

in the target is small compared to the energy of the incident beam. For

thick targets ( > 3 gm/cm ) of heavy elements, the energy loss in the

target is greater than 10% of the incident beam energy.

16





The most probable energy loss and the half-width of the energy loss

distribution is nearly independent of the incident energy (E- ) of the

electron for the range of energies used. Figures 1 through 3 plot Q

versus target thickness for various values of E. in lead. Similarly,

Figures 4 through 6 show that the half-widths are also nearly independent

of incident energy for lead. In Tables I through VIII, comparisons of

Q and half-width for different target thicknesses, show the energy

independence in other metals.

A monoenergetic beam was used to calculate the Blunck and Westphal

values for the most probable energy loss and the half-width of the

energy loss distribution. These values were plotted against target

thickness in order to try and fit the curves to simple empirical

formulas which could be used in substitution of the tedious Blunck and

Westphal computations. For the most probable energy loss, , a semi-

empirical formula given by Hanson, Goldwasser, and Mills was used which

has the form:

% - at l In - + b
p

The constants a and b were determined as follows; a was selected to be

equal to 0.154 which is a collection of fundamental constants equal to:

2„e
4

„

mc

where e is the fundamental charge of the electron, m is the mass of the

electron, c is the speed of light, and N is Avogadro's number. Using

this value for a, b was determined by fitting the semi -empirical formula

to the beryllium data for the most probable energy loss as given by the

Blunck and Westphal theory. The value of b obtained was 20.085. This

17





proved to be significantly different from the value of 17.68 given by

Hanson et al for the value of b. This form of the semi -empirical formula

agreed to within about 3% of the values for Q predicted by Blunck and

Westphal . The only exceptions were for thick targets of heavy metals

such as gadolinium and lead. This is a significant improvement over the

values predicted from the formula by Hanson et al which gives results

good to only within about 15% for Q . The semi -empirical formula for Q

is plotted against target thickness and is shown in Figures 7 and 8.

Also plotted on these graphs are the theoretical Blunck and Westphal

values for the various metals. In addition, Table IX gives the values

for Q as calculated using the Blunck and Westphal theory, the Hanson,

Goldwasser, and Mills empirical formula and the empirical formula

as computed in this paper. Percent differences between the semi -empirical

formulas and the Blunck and Westphal values are also given.

A similar attempt was made to fit the data of half-widths to an

empirical formula, but no simple formula could be found. Instead, a

graphical presentation of half-widths is given in order to present the

experimenter with a satisfactory estimate of the half-width. Figure 9

shows the half-widths as a function of target thickness for the metals

used in this study. The strong "Z" dependence is shown as the heavier

elements curve sharply upward. In Figure 10, the half-width is plotted

against the fractional radiation length the electrons have for the various

thicknesses of target. The graphs should enable one to estimate the

half-width of the energy loss distribution if the thickness of the target

is known for materials up to the atomic number of lead.

18





APPENDIX A - TABLES

Table I. Comparison of Most Probable Energy Loss
Beryllium Energy Loss Distribution.

Q
p

> for

E
.
(MeV

)

T(g/cm
2

) Q
p
(B&0) Q

p
(MID Qp(EXP)

52.89 0.742 0.98 0.99 0.98 + .02

1.479 2.04 2.03 2.00 + .04

2.209 3.05 3.08 2.96 + .05

2.961 4.17 4.15 4.09 ± .08

3.673 5.29 5.25 5.19 + .05

4.415 6.36 6.40 6.24 ± .13

5.179 7.46 7.52 7.40 ± .08

5.908 8.69 8.65 8.38 ± ,12

74.78 0.738 1.02 1.00 1.01 ± .03

1.479 2.04 2.04 2.01 ± .04

2.209 3.11 3.10 3.04 ± .05

2.941 4.15 4.15 4.15 ± .14

3.673 5.29 5.15 5.15 ± .06

4.435 6.39 6.40 6.28 ± .10

5.179 7.46 7.50 7.42 ± .13

5.908 8.68 8.65 8.51 ± .09

94.64 0.738 1.02 1.00 1.05 ± .04

1.479 2.04 2.05 2.06 ± .04

2.209 3.11 2.99 3.09 ± .04

2.941 4.15 4.20 4.06 ± .05

3.673 5.29 5.27 5.19 + .06

4.435 6.39 6.40 6.30 ± .12

5.179 7.61 7.55 7.47 ± .12

5.908 8.69 8.63 8.63 + .14
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Table II. Comparison of Full Widths at Half Maximum for
Beryllium Energy Loss Distribution.

E
i

T(g/cm
2

) H.W.(B&0) H.W.(MID) H.W.(EXP)

52.89 0.742
1.479
2.209
2.961

3.673
4.415
5.179
5.908

0.33
0.53
0.67
0.90
1.17
1.40
1.76
2.09

0.36
0.56
0.76
0.96
1.18
1.41

1.70
1.93

0.36 ± .02

0.56 ± .04

0.77 + .04

1.07 ± .07

1.25 ± .06

1.46 ± .09

1.76 + .10

2.19 ± .14

74.78 0.733
1.479
2.209
2.941

3.673
4.435
5.179
5.908

0.46
0.56

0.74
0.96
1.17

1.46
1.76
2.12

0.44
0.60
0.78
0.96
1.20

1.43
1.68
1.96

0.47 + .04

0.61 ± .04

0.79 ± .05

1 .15 + .08

1.39 ± .06

1.61 + .10

1.83 ± .08

2.24 ± .11

94.64 0.738
1.479
2.209
2.941

3.673
4.435
5.179
5.908

0.58
0.68
0.83
1.06

1.23
1.53
1.82
2.16

0.54
0.70
0.88
1.05
1.28
1.50
1.75

1.98

0.57 ± .05

0.66 + .04

0.84 ± .06

1 .22 ± .08

1.35 + .08

1.58 ± .12

1.93 + .10

2.29 ± .11
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Table III. Comparison of Host Probable Energy Loss, Q , for

Tin Energy Loss Distribution.

E. (MeV) T(g/cm
2

) Q
p
(B&0) Qp(MID) Q

p
(EXP)

52.53 1.485
2.970
4.455

1.83
3.84
6.56

1.80
3.85
6.55

1.78 ± .05

3.86 ± .15

6.35 ± .30

75.00 1.485
2.970
4.455

1.81

3.93
6.56

1.80
3.90
6.60

1.77 + .07

3.86 i .15

6.65 + .30

94.40 1.485
' 2.970
4.455

1.88
3.93
6.56

1.90
3.98
6.60

1.87 + .10

3.96 ± .20

7.00 + 1.0

Table IV. Comparison of Full Widths af Half Maximum for Tin

Energy Loss Distribution.

E.j(MeV) T(g/cm
2

)
H.W.(B&0) H.W.(MID) H.W.(EXP)

52.53 1.485
2.970
4.455

0.75
3.03
16.70

0.78
2.68
16.00

0.78 t .10

3.02 ± .40

11.30 ± 2.0

75.00 1.485
2.970
4.455

0.73
2.56

16.69

0.76
2.72

16.15

0.83 + .10

2.96 + .42

15.50 + 2.0

94.40 1.485
2.970
4.455

0.83
2.63
16.75

0.95
2.85

16.00

0.88 ± .15

2.72 ± .45

16.20 ± 4.0
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Table V. Comparison of Most Probable Energy Loss, Q
Copper Energy Loss Distribution.

for

E^MeV) T(g/cm
2

) Q
p
(B&0) Q

p
(MID) Q

p
(EXP)

52.84 0.711

1.423
2.134
2.845

0.92
1.89
2.90
3.87

0.90
1.84
2.80
3.83

0.94
1.87
2.87
3.80

74.76 0.711

1.423
2.134
2.845

0.92
1.89
2.90
3.95

0.90
1.85
2.85
3.85

0.92
1.91

2.92
3.98

94.30 0.711

1.423
2.134
2.825

0.91

1.94
2.96

3.99

0.90
1.90
2.90
3.90

0.95
1.94
2.93
4.00
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Table VI. Comparison of Full Widths at Half Maximum for

Copper Energy Loss Distribution.

E^MeV) T(g/cn/)

52.84

74.76

94.30

0.711
1.423
2.134
2.845

0.711

1.423
2.134
2.845

0.711
1.423
2 . 1 34

2.845

H.W.(B&0)

0.46
0.69
1.04
1.54

0.56
0.78
1.12

1.61

0.67
0.87
1.22
1.71

H.W.(MID)

0.40
0.65
1.00
1.60

0.46
0.70
1.15
1.58

0.62
0.80
1.13
1.48

H.W.(EXP)

0.52
0.84
1.16
1.75

0.66
1.07

1.43
1.98

0.74
0.99
1.47
1.75
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Table VII. Comparison of Most Probable Energy Loss

Lead Energy Loss Distribution.
Qp. for

E^MeV)

53.85

74.74

91.37

T(g/crn )

0.706
1.412
2.118
2.825

0.76
1.412
2.118
2.825

0.706
1.412
2.118
2.825

Qp(B&0)

0.79
1.66
2.55
3.57

0.83
1.68
2.66
3.66

0.90
1.80
2.70
3.69

Qp(MID)

0.80
1.88
2.60
3.70

0.84
1.88
2.65
3.70

1.00
2.00
2.73
3.80

Qp(EXP)

0.81 + .05

1.45 + .08

2.64 + .10

3.66 ± .12

0.82 + .05

1.80 + .10

2.59 ± .12

3.70 ± .15

0.87 ± .07

1.77 ± .10

2.75 ± .15

3.84 ± .22
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Table VIII. Comparison of Full Widths at Half Maximum for

Lead Energy Loss Distribution.

E^MeV) T(g/cm
2

)
H.W.(B&0) H.W.(MID) H.W.(EXP)

53.85 0.706
1.412
2.118
2.825

0.54

0.97
2.11

6.46

0.56
1.10
2.21

6.32

0.60 + .06

1.23 ± .12

2.65 ± .25

6.26 + .50

74.74 0.706
' 1.412
2.118
2.825

0.78
1.23
2.37
6.52

0.75
1.28
2.35
6.43

0.82 + .05

1.47 ± .07

2.24 ± .19

6.25 ± .85

91.37 0.706
1.412
2.118
2.825

0.93
1.37
2.53
6.95

0.85
1.35
2.48
6.65

0.78 + .08

1.52 ± .19

2.74 ± .64

8.80 ± .70





Table IX. Comparison of Semi -Empirical Formula Results for
Most Probable Energy Loss, Q

2
t(gm/cm )

PERCENT PERCENT

Q
p
(B&W) Q

p
(HAN) DIFF. Qp(MID) DIFF.

BE(Z=4)

1.0 1.32 1.16 12.1 1.33 0.8
2.0 2.76 2.43 12.0 2.76 0.0
3.0 4.22 3.73 11.6 4.22 0.0
4.0 5.70 5.05 11.4 5.71 0.2
5.0 7.20 6.39 11.0 7.21 0.1

A1(Z=13)
1.0 1.38 1.24 10.1 1.41 2.2
2.0 2.86 2.58 9.8 2.94 2.8
3.0 4.40 3.96 10.9 4.50 2.3
4.0 6.02 5.37 10.8 6.08 1.0

Cu(Z=29)
1.0 1.24 1.09 12.1 1.26 1.6
2.0 2.60 2.27 12.7 2.61 0.4
3.0 4.02 3.60 12.9 4.00 0.5
4.0 5.52 4.74 14.1 5.42 1.8
5.0 7.12 6.00 .' 15.7 6.85 3.8

Sn(Z=50)
1.0 1.16 1.02 12.1 1.17 0.9
2.0 2.44 2.13 12.7 2.44 0.0
3.0 3.84 3.27 14.8 3.74 2.6
4.0 5.58 4.43 20.6 5.06 9.3

Gd(Z=64)
1.0 1.12 0.98 12.5 1.13 0.9
2.0 2.40 2.04 15.0 2.35 2.1

3.0 3.84 3.14 18.2 3.60 6.2
4.0 5.86 4.26 27.3 4.87 16.9

Pb(Z=82)
1.0 1.06 0.92 13.2 1.07 0.9
2.0 2.30 1.94 15.6 2.24 2.6
3.0 2.94 2.99 24.1 3.43 12.9
4.0 7.20 4.05 43.7 4.64 35.6

Qp(B&W)

Qp(HAN)

most probable energy loss as given by Blunck and Westphal

.

most probable energy loss as calculated from the semi-
empirical formula by Hanson et al

.

most probable energy loss as calculated from the semi-
empirical formula presented in this paper.

All percentage differences are with respect to the Blunck and Westphal
Theory.
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APPENDIX C - DERIVATION OF NUMERICAL CONSTANT IN

EQUATION FOR LAMBDA

Stemheimer [11] gives for the correct expression for the average

energy loss of electrons:

1 dE = 27m Z e^

P dX mcV Ap

where the factor in front is:

2ttN Z e
4

1n
"A2

T 9

^
d-3

2
) I

2 8
(1)

mcV A

T is the maximum transferable energy, and for electrons impact on

electrons, is equal to E../2.

Landau's expression for the average energy loss due to distant

collisions is:

1 o

fc to (e) de
,

£
1 u i

1n(l-6
2

)
I
2

In —r— , where me = j~,~—L~—
e 2mcV

Substituting this into (1) gives the following expression for the energy

loss per path length:

BX
= K = a ln^ -In e ' +| -« ' (2)

The parameter x was defined by Landau as:

X =
aX

In aX + In e' - 1 + C R + 6

C n = Bournelli's constant = 0.577
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By eliminating the term In e' in X by the expression for K, equation (2)

above, the expression for X becomes:

>- h - -f +1 " 4- - 1" 4 + c
B

+
| - 1

.

The last four constants add to give a numerical value of 0.686.

Therefore, the expression for x becomes:

* • h - I
+ ln

n- - °- 686
•

Previous calculations involving energy loss of electrons has used

the constant 1.116 in the equation for lambda. However, calculations in

this paper used the constant 0.686, where the density effect has been

taken into account. The differences in the values of these constants

can b2 significant for values of lambda of the order of 1.0. These

values for lambda are found for values of Q near the peak of the energy

loss distribution.
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APPFNDIX D - DERIVATION OF SCREENING CORRECTION

CONSTANT "F"

In calculating the probabilities for radiation processes, it is

necessary to take into account the screening of the Coulomb field by

outer atomic electrons particularly when the average impact parameter of

the electron is of the same order of magnitude as the atomic radius.

This screening effect must be taken into account when computing the

energy loss of electrons.

An electron of initial energy E
i

will loose energy by the emission

of radiation as it passes near a heavy nucleus (brcmsstrahlung) .
The

probability of this electron to emit a photon with energy between E'

2
and E'+dE

1 after traversing a thickness of dT(gm/cm ) is given in an

article by Bethe and Heitler [12] as:

•^E'JdE'dT = 4 a I Z
2

v\ fr- F (E
j

u)

where

a = fine structure constant = 1/137,

2 2
r = electron radius = e /mc ,

e

F(E.u) = correction constant taking into account complete

screening by other atoms.

The parameter o, is defined in Rossi [15], as:

u - 2

E, + mc

2 ..,

For electrons the assumption that mc «E
i

can be made, which in turn will

make: n
<• -17- •
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Rossi also defines the parameter:

-1/3

where

100 mc
2

u

E. + mc

r .

atom
r
eff

Z

r ff
is the effective impact parameter. For y <<: l > the effective radius

much greater than the radius of the atom, complete screening is defined,

The basic assumption of the Blunck and Westphal theory is that the

energy loss is small compared to the initial energy of the electron.

Therefore, E'<<E- and y<<! and u«1

.

For complete screening, Bethe and Heitler give for the screening

correction constant:

-1/3

F(E-u) = [1 + (1 - u)
2

- | (1 - u)] In 183 Z + 1 (1 - u)

For u<<! the function F(E-u) becomes:

4 "
1/3

1

F = | In 133 Z +
^
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APPENDIX E - DERIVATION OF RADIATION LENGTH

?
The average radiation loss of an electron of energy E- per gm/cm

material is: (See Rossi [15], Bethe-Heitler [12]):

^! - / A ( F . F M F ' r!F ' = A nS. 7 2 r
2

dT 7 ¥ E
i
E '» E

'

dE '

= 4aF r
e
FE

i

N 2 2 2
a
R

is defined as = 4 a-j Z r F (gm/cm ) ,

where F is a screening correction constant to take into account the

screening of the electrons by the Coulomb field of orbit electrons.

2
Defining a

R
as above, the average energy loss per gm/cm material can be

written,

dE r

dT
=

' a
R

E

Therefore,

c
"aRT

E = E e
o

By defining the radiation length as that length where the electron has

lost one half of its energy,

1 E. = E. e'"^
2

L
i

L
i

e

and

1
a
R

T
R

in 2

The above definition for radiation length differs from that of the

other authors where the radiation length is that length of material in

which an electron has had its energy reduced to 1/e of the initial

energy.
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Putting numerical values into an gives

1.38 x lCf
3 i- F (grn/cm

2
)
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APPENDIX F - REMOVAL OF THE DIVERGENCE OF THE INTEGRAL

The expression for A has been defined as:
Y

A - A,

A

•^T^

Therefore, the probability of energy loss Q is

_y\2

„y
Z

1

Z
\

C Y e
Y /""max , . /2a ,

W(Q)dQ - £ I ±r I
- -XX. / „*-l « Tf

Y

-1-Z /
n
max

n e dn dA

For z < 1 the integral diverges when calculated numerically. The actual

integral is not singular, so a series expansion is taken; first order

expansion gives the following:

/
m

n
in

1 A - ^

nT7
d ^ " T V

for z ^

Integration by parts allows the integral to obtain a form suitable for

handling by standard numerical routines.

T = /
in

z-1 Jlh n - 3- Hn e y 2d I in

n
2 ' 1

e*
(r>>

dn (1)

finally

T = B_ e
* (n)

1 z
T = — n exp

z m v

nmax /"
nm z

O f J-
e*™' •'(!,) dn
<Kn)

(2)

^ Vm " T J m z
n

e*
(n)

(/2A -n) dn
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EO = E

Z = Z

A = A

T = T

BSQ =
(3

2

ALPHA = a

V = F

AR R

TAU = x

Q = Q

RION = I(Z)

X = X

DELTA = 6

BBARK = K

LAMBDA = x

D(I) = C

G(I) = y

R(D = A.

QBAR = Q

B = b

CAPPI

Y

Y

APPENDIX G - CORRELATION OF COMPUTER SYMBOLOGY AND
EQUATION SYMBOLS

energy of incoming electrons in MeV.

atomic number of target material.

mass number of target material.

2
target thickness in gm/cm .

o

(electron speed/c) ".

basic cross section constant.

correction constant taking into account complete

screening in radiation loss.

2-1
inverse radiation length times In 2 in (gm/cm )

target thickness in radiation length times In 2.

energy loss of electrons in MeV.

Bloch formula for average ionization potential.

variable for evaluation of density correction.

density correction according to Sternheimer.

average total energy loss (MeV/ gm/cm ).

Landau lambda for energy loss distribution.

constants for superposition of W(Q) from Gaussians.

average energy loss in target (MeV).

correction constant for second order term in resonance

part of ionization loss.

variable in Landau function.
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ETAM = n upper limit of integration variable which is that

portion of Q lost by radiation.

PS I = 'K n) this term is defined for convenience in evaluation of

some of the exponentials which occur in the equations,

FGAMMA =
(¥(n )- a

2
)

T {% ] e

i T (*(n) - a
2

)

FCT - % T
(/? A- n ) e

T

1 ,iT,T ,1
*'2

WQT = ^ (fl-) (*) ^T
C Y

CONSTT = ^^T-
(b

2
Y
2

)

"T
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APPENDIX H - COMPUTER PROGRAM

EXTERNAL FCT
COMMON TAUfCAPPltPPSI
REAL LAMBDA
REAL LAMBD

DIMENSION WQ(4),CCC(4),FGAMMA(4)
DIMENSION WQT(4) ,WQTT(4 iCONSTT 4)
DIMENSION D(4),G(4),R(4) ,CAPP(4 iETA(4)
DIMENSION EOO( 12), COUNT (12), BIN (200)

READ IN THE CONSTANTS WHICH WILL FIT THE ENERGY LOSS
DISTRIBUTION TO A SUM OF FOUR GAUSSIANS. ^, „, , ,° DATAD(I),D{2),D(3),D(4)/0..174,0. 058, °

5
°1? »g .007/ , G 1

>

1,G{2),G(3),G(4)/1.8,2.0,3.0,5.0/,R(1),R(2),R(j),R(4)/
10.0,3.0,6.5,11.0/

THF NEXT THREE PARAMETERS GIVE THE STARTING VALUE FOR THE
ENERGY LOSS DISTRIBUTION (QS), THE WIDTH OF THE BINS FOR
THE FINAL DISTRIBUTION (DELQ), AND THE WIDTH OF THE BINS

OF THE INITIAL DISTRIBUTION (DELQS).
QS=1.7
DELQ=.05
DELQS = 0. 100001

"COUNTM" IS A NORMALIZING FACTOR FOR THE INITIAL ENERGY
DISTRIBUTION

C0UNTM=795.
L = l

READ IN THE TARGET PARAMETERS AND DENSITY CORRECTION
C0N

REAdII,2] ) (EOO(J).COUNT(J) ,J=1,12)
READ(5,20) Z,A,T,X1,K,M,C n^E0=INCIDENT ELECTRON ENERGY
Z=ATOMIC NUMBER OF TARGET
ANATOMIC WEIGHT OF TARGET
T=THICKNESS OF TARGET IN GM/CM2 np/>TTnil
X1,K,M,C ARE THE STERNHEIMER DENSITY CORRECTION
CONSTANTS.

20 F0RMAT(3F10.5,4F7.4)
21 FORMAT (6F10.5)

ZERO ALL THE BINS
DO 600 N=l,200

600 BIN(N)=0.0

INITIATE INTRODUCTION OF FIRST ENERGY BIN FOR THE INITIAL
DISTRIBUTION

DO 700 J=l,12
EO=EOO(J)

25 F0RMATP
2
HARGEf

A
pARAMET^RS

C
AND DENSITY CORRECTION

1C0NSTANTS' ,//,' E0=« F6 .2 ,3X , ' Z= • F6,.2, 3X ,,« A-•• F8 .4,
13X,' T=*F9.5,/, S X1='F5.2,3X,« K=»F6.3,3X,» M=«F8.4,
13X,« C=«F8.4,//)

BSQUAR=BSQ IS EQUAL TO THE SQUARE OF THE ELECTRONS SPEED
DIVIDED BY THE SQUARE OF THE SPEED OF LIGHT.

BSQ=1. 0-0.25/ EOO (J )**2

ALPH=ALPHA IS THE BASIC CROSS SECTION CONSTANT IN UNITS
OF MEV/GM/CM SQUARED.

ALPHA=(0.154*Z)/(BSQ*A)

FUNC(Z)= IS THE CORRECTION CONSTANT TAKING INTO ACCOUNT
COMPl ETE SCREENING IN RADIATION LOSS. V= FUNL(Z)

V=(4./3.)*(AL0G( 183./Z**ll./3.) ) J+1./9.
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XX=X IS THE VARIABLE USED FOR EVALUATION OF DENSITY
CORRECTION.

X=AL0G10(E00U)/.511)

AR=ARAD(Z,A, V)

TAU IS THE TARGET THICKNESS IN RADIATION LENGTH TIMES LN2
TAU = T*AR

RION IS THE BLOCH FORMULA FOR AVERAGE IONIZATION POTENT.
RION = 13.5E-6*Z

THE NEXT SECTION SELECTS THE CORRECT STERNHEIMER COR-
RECTION CONSTANT FOR THE TARGET BEING USED.. DELTA IS THE
STERNHEIMER CORRECTION TERM.

IF(X.LT.Xl) GO TO 40
DELTA2 = 4.606*X+C
DELTA = DELTA2
GO TO 50

40 DELTA1 = 4.606*X+C+K*(X1-X)**M
DELTA = DELTA1

50 WRITE(6,60) DELTA
60 FORM AT {• DELTA= f F12. 6)

SQ, ALPHA, V, AR, TAU, RION,

X

50=^12.9,/, • ALPHA=«F12.9,/ f • V=«F12.9,/
WRITE (6, 10) BSQ, ALPHA, V,AR, TAU,

LO FORMAT*//, • BSQ= • F 12.9, / , • ALPH
1F12.9,/,* TAU=' F12.9,/,' RION= s

BBARK = BARK(ALPHA,EO, BSQ, RION,
U D T T P f A - "7 n \ K R A D U

F12.9,/,' X='F12.9,//)
BtJAKK = BAKM ALPHA , tU, &5U, Kl ON , DELTA)
WRITE(6,70)BBARK

70 FURMATC AVERAGE TOTAL ENERGY LOSS =«F12.7,//)
QBAR IS THE AVERAGE ENERGY LOSS IN THE TARGET

QBAR=T*BBARK

B=BB(Z, ALPHA, T, QBAR)
WRITE(6, 100)0BAR,3

100F0RMATC QBAR=« F12 .7 , » B='F12.7,//)
"Q" IS THE ENERGY LOSS OF ELECTRONS IN MEV.

Q=QS

220 LAMBDA=LAMBD(Q f ALPHA,T,EO, BBARK)
AWQ=0.0
DO 105 1=1,4
DD = D( I)
GG=G{ I)
RR = R ( I )

CALL CAPLAMCP, LAMBDA, RR, GG , B, CCAPP

)

CAPPU ) = CCAPP
CAPP1=CAPP(I)

THIS NEXT SECTION DOES THE INTEGRATION OF THE FUNCTION
F(ETA). CC=ETAM=ETAMAX IS THE UPPER LIMIT OF INTEGRA-
TION. "NN" IS A FACTOR WHICH DIVIDES THE FINAL DISTRI-
BUTION INTO NN PARTS IN ORDER TO GET MORE ITERATIONS FOR
THE FUNCTION BEING INTEGRATED.

CCC( I)=ETAMIQ,B,GG,ALPHA,T)
CC=CCC( I)
ETAMAX=CC
SUM=0.0
XL=0.0
NN=10.
XU=ETAMAX/NN
DELTA=XU

QG10 IS A TEN POINT GAUSSIAN QUADRATURE INTEGRATION
ROUTINE FOUND IN THE NPS LIBRARY OF ROUTINES.

310 CALL QG10(XL,XU,FCT,Y)
SUM=SUM+Y
XL=XU
XU=XU+DELTA
IF(XU.GT.ETAMAX) GO TO 30
GO TO 310
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30 PSI=PSII(CAPPlfCC) „ „ Arn , ncT .

FGAMMA(I)=FGAMA(TAU,CC,CAPP1,PSI)
WQT( I)=WQWQ( ALPHA, T,E0,TAU)
CCNSTT (I)=CONST(DD,GG, B,TAU)
WQ( I ) =WQT ( I ) *CONSTT ( I ) *( FGAMMA (I)-SUM)

awo TS THF VALUE FOR W(Q)D0 ASSUMING A MONOENERGETIC
SOURCE OF ELECTRONS, AND THE BINS REPRESENT W(Q)DQ FOR
THE UNFOLDED THEORY.

AWQ=WQ(I)+AWQ
105

BIN(N)'=BIN(N}+AWQ*(COUNT{J)/COUNTM)
WRITE(6,650) Q

v

650 FORMAT! 1 Q=, F6.3)
WRITE! 6, 610) (N,BIN(N )

610 FORMAT (« BIN( e ,I3,' )=«,F12.9)
N = N+1
Q=Q+DELQ
IF(5.5-Q) 500,220,220

500 L=L+DELQS/DELQ
700 CONTINUE

STOP
END

ARAD^R
L F

y
N
S
C
THi

N
IN
A
^p

D
sl'R

A
A^ATION LENGTH TIMES THE LN 2.

UNITS IN (GM/CM) TO THE MINUS ONE.
X = 1.38E-3*Z**2
W = X*Y
ARAD = W/A
RETURN
END

REAL FUNCTION BARIU ALPHA, EO, BSQ, RION, DELTA J

BBARK-BARK IS THF AVERAGE TOTAL ENERGY LOSS
A = ALOG((.511*EO*BSQ)/12.0*(1.0-BSQ)*RION**2J)
B = A+9.0/8.0-BSQ
C = B-DELTA
BARK = ALPHA*C
RETURN
END

REAL FUNCTION L AMBD( Q, ALPHA, T, E0,B8ARK)
C__DMUCTMCD

LAMBD IS THE LANDAU LAMBDA AS CORRECTED BY STERNHEIMER.
A=Q/ (ALPHA*T)
B=A-BBARK/ALPHA
C=B+ALOG(EO/(ALPHA*T)

)

LAMBD=C-0.68 5
RETURN
END

REAL FUNCTION BB { Z, ALPHA ,T , QBAR) nr_ n ___ M
B=BB IS THE CORRECTION CONSTANT FOR SECOND ORDER TERM
IN RESONANCE PART OF THE IONIZATION LOSS.

A=Z**( 2-0/3.0)
B=A/ ( ALPHA-T)
C=SQRT 120.0 E-6* QBAR)
BB=B*C
RETURN
END
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CAPe«S
RTs

I¥^
C
0i;

LR^ P
LE

Y
i

R
N

,

?f.E
B,
Sa'5

P
Ai FUNCTION

CCAPP=P/SQRT(B**2+G**2)
RETURN
END

ETA^x" ^N
?SE

Q
SpPlR

M
^A!f

G6^^fE^ATION VARIABLE WHICH

IS THAT PORTION OF Q LOST BY RADIATION.
A=SQRT12.0)
Y = SQRT IB**2+G**2)

ETAM=C*Q/(ALPHA*T)
RETURN
END

THE
R
PS!nCT

F^^F^T F
A?

T
{I

T
THE FUNCTION TO BE INTEGRATED FROM

TO SOKE VALUE ETACMAX).
COMMON TAU,CAPP1,PPSI
PPSI=PSII{CAPPltETA)
A=1.0/TAU

c
B
:rs^

T
fi:^c A ppi.-ETA

S^SIiTfcwBiiSio. go to 10
E=EXP(D)
GO TO 20

10 E=0.0
20 FCT=B*C*E

RETURN
END

REAL FUNCTION FGAMA(TAU, ET AM,CAPPl, PSI

)

A=1.0/TAU
B=A*(ETAM**TAU)
C=EXPIPSI-CAPP1**2)
FGAMA=B*C
RETURN
END

REAL FUNCTION WQWQULPHA ,T,EO,TAU)
THIS IS A CONSTANTS AND CONSISTS OF THE FIRST PARI,

BEFORE THE SUM, IN THE EQUATION FOR W(Q).
A=1./(ALPHA*T)
B=UALPHA*T)/EO)**TAU
C — A " R
D^C*(1./2.)**(TAU/2.1
E=l. /GAMMA (TAU)
WQWQ=D*E
RETURN
END

REAL FUNCTION PS 1 1 (CAPP1 , ET A

)

A=SQRT(2.0)*CAPP1*ETA
B=(ETA**2)/2.0
PSII=A-B
RETURN
END

REAL FUNCTION CONST ( D ,G ,

B

,TAU)
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A=D*G
C=( B**2+G**2 )**( 1.0-
C0NST=A/(SQRT(C) )

RETURN
END

TAU)
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